Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects.

نویسندگان

  • Lea A Medeiros
  • Lucas M Dennis
  • Mark E Gill
  • Hristo Houbaviy
  • Styliani Markoulaki
  • Dongdong Fu
  • Amy C White
  • Oktay Kirak
  • Phillip A Sharp
  • David C Page
  • Rudolf Jaenisch
چکیده

Mir-290 through mir-295 (mir-290-295) is a mammalian-specific microRNA (miRNA) cluster that, in mice, is expressed specifically in early embryos and embryonic germ cells. Here, we show that mir-290-295 plays important roles in embryonic development as indicated by the partially penetrant lethality of mutant embryos. In addition, we show that in surviving mir-290-295-deficient embryos, female but not male fertility is compromised. This impairment in fertility arises from a defect in migrating primordial germ cells and occurs equally in male and female mutant animals. Male mir-290-295(-/-) mice, due to the extended proliferative lifespan of their germ cells, are able to recover from this initial germ cell loss and are fertile. Female mir-290-295(-/-) mice are unable to recover and are sterile, due to premature ovarian failure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of mir-290-295 in Murine Embryonic and Germ Cell Development

MicroRNAs, 22nt long RNAs derived from hairpin transcripts, are important regulators of gene expression and have been shown to participate in regulation of every biological process known to date. Mir-290 through mir-295 (mir-290-295) is a mammalian-specific miRNA cluster that, in the mouse, is expressed specifically in early embryos and embryonic germ cells. This thesis examines the in vivo con...

متن کامل

Evolution of the miR-290–295/miR-371–373 Cluster Family Seed Repertoire

Expression of the mouse miR-290-295 cluster and its miR-371-373 homolog in human is restricted to early embryos, primordial germ cells, the germ line stem cell compartment of the adult testis and to stem cell lines derived from the early embryonic lineages. Sequencing data suggest considerable seed diversification between the seven homologous pre-miRNAs of miR-290-295 but it is not clear if all...

متن کامل

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

miR-302 Is Required for Timing of Neural Differentiation, Neural Tube Closure, and Embryonic Viability

The evolutionarily conserved miR-302 family of microRNAs is expressed during early mammalian embryonic development. Here, we report that deletion of miR-302a-d in mice results in a fully penetrant late embryonic lethal phenotype. Knockout embryos have an anterior neural tube closure defect associated with a thickened neuroepithelium. The neuroepithelium shows increased progenitor proliferation,...

متن کامل

Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice

Glycine decarboxylase (GLDC) acts in the glycine cleavage system to decarboxylate glycine and transfer a one-carbon unit into folate one-carbon metabolism. GLDC mutations cause a rare recessive disease non-ketotic hyperglycinemia (NKH). Mutations have also been identified in patients with neural tube defects (NTDs); however, the relationship between NKH and NTDs is unclear. We show that reduced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 34  شماره 

صفحات  -

تاریخ انتشار 2011